The Perimeter of Ignorance

Scientists face a choice: invoke a deity or continue the quest for knowledge

Sir Isaac Newton

Sir Isaac Newton

©iStockphoto.com/Duncan Walker

Writing in centuries past, many scientists felt compelled to wax poetic about cosmic mysteries and God's handiwork. Perhaps one should not be surprised at this: most scientists back then, as well as many scientists today, identify themselves as spiritually devout.

But a careful reading of older texts, particularly those concerned with the universe itself, shows that the authors invoke divinity only when they reach the boundaries of their understanding. They appeal to a higher power only when staring into the ocean of their own ignorance. They call on God only from the lonely and precarious edge of incomprehension. Where they feel certain about their explanations, however, God gets hardly a mention.

Let's start at the top. Isaac Newton was one of the greatest intellects the world has ever seen. His laws of motion and his universal law of gravitation, conceived in the mid-seventeenth century, account for cosmic phenomena that had eluded philosophers for millennia. Through those laws, one could understand the gravitational attraction of bodies in a system, and thus come to understand orbits.

In the Principia, Newton distinguishes between hypotheses and experimental philosophy, and declares, "Hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have no place in experimental philosophy." What he wants is data, "inferr'd from the phænomena." But in the absence of data, at the border between what he could explain and what he could only honor—the causes he could identify and those he could not—Newton rapturously invokes God:

Eternal and Infinite, Onmipotent and Omniscient; … he governs all things, and knows all things that are or can be done. … We know him only by his most wise and excellent contrivances of things, and final causes; we admire him for his perfections; but we reverence and adore him on account of his dominion.

A century later, the French astronomer and mathematician Pierre-Simon de Laplace confronted Newton's dilemma of unstable orbits head-on. Rather than view the mysterious stability of the solar system as the unknowable work of God, Laplace declared it a scientific challenge. In his multipart masterpiece, Mécanique Céleste, the first volume of which appeared in 1798, Laplace demonstrates that the solar system is stable over periods of time longer than Newton could predict. To do so, Laplace pioneered a new kind of mathematics called perturbation theory, which enabled him to examine the cumulative effects of many small forces. According to an oft-repeated but probably embellished account, when Laplace gave a copy of Mécanique Céleste to his physics-literate friend Napoleon Bonaparte, Napoleon asked him what role God played in the construction and regulation of the heavens. "Sire," Laplace replied, "I have no need of that hypothesis."

Laplace notwithstanding, plenty of scientists besides Newton have called on God—or the gods—wherever their comprehension fades to ignorance. Consider the second-century A.D. Alexandrian astronomer Ptolemy. Armed with a description, but no real understanding, of what the planets were doing up there, he could not contain his religious fervor:

I know that I am mortal by nature, and ephemeral; but when I trace, at my pleasure, the windings to and fro of the heavenly bodies, I no longer touch Earth with my feet: I stand in the presence of Zeus himself and take my fill of ambrosia.

Or consider the seventeenth-century Dutch astronomer Christian Huygens, whose achievements include constructing the first working pendulum clock and discovering the rings of Saturn. In his charming book The Celestial Worlds Discover'd, posthumously published in 1696, most of the opening chapter celebrates all that was then known of planetary orbits, shapes, and sizes, as well as the planets' relative brightness and presumed rockiness. The book even includes foldout charts illustrating the structure of the solar system. God is absent from this discussion—even though a mere century earlier, before Newton's achievements, planetary orbits were supreme mysteries.

Celestial Worlds also brims with speculations about life in the solar system, and that's where Huygens raises questions to which he has no answer. That's where he mentions the biological conundrums Of the day, such as the origin of life's complexity. And sure enough, because seventeenth-century physics was more advanced than seventeenth-century biology, Huygens invokes the hand of God only when he talks about biology:

I suppose no body will deny but that there's somewhat more of Contrivance, somewhat more of Miracle in the production and growth of Plants and Animals than in lifeless heaps of inanimate Bodies. … For the finger of God, and the Wisdom of Divine Providence, is in them much more clearly manifested than in the other.

Recent Stories

The way they live, the food they eat, and the effect on us

A true but unlikely tale

Story and Photographs by William Rowan

Increasing day length on the early Earth boosted oxygen released by photosynthetic cyanobacteria.

Genomic evidence shows that Denisovans and modern humans may have overlapped in Wallacea.